A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle.

نویسنده

  • Shin-Pon Ju
چکیده

This study uses molecular dynamics simulations performed in a parallel computing environment to investigate the adsorption of water molecules surrounding Au nanoparticles of various sizes. An observation of the oxygen and hydrogen atom distributions reveals that the adsorption of the water molecules creates two shell-like formations of water in close vicinity to the Au nanoparticle surface. These shell-like formations are found to be more pronounced around smaller Au nanoparticles. The rearrangement of water molecules in this region reduces the local hydrogen bond strength to below that which is observed in the bulk region. Finally, the simulation results indicate that the absolute value of the interaction energy between the water molecules and the Au nanoparticle is reduced when the water molecules surround a nanoparticle of larger diameter. This observation implies that a stronger adsorption effect exists between smaller Au nanoparticles and water molecules. Hence, the value of the adsorption constant increases for smaller Au nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Sensitive Detection of H2S Molecules Using a TiO2-Supported Au Overlayer Based Nanosensors: A Van Der Waals Corrected DFT Study

The adsorption of the H2S molecule on the undoped and N-doped TiO2 anatase supported Au nanoparticles were studied using density functional theory calculations. The adsorption of H2S on both Au and TiO2 sides of the nanoparticle was examined. On the TiO2 side, the fivefold coordinated titanium site was found to be the most favorable binding site, giving rise to the strong interaction of H2S wit...

متن کامل

Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

متن کامل

Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....

متن کامل

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation

In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 9  شماره 

صفحات  -

تاریخ انتشار 2005